An Efficient ICA Based Approach to Multiuser Detection in MIMO OFDM Systems

نویسندگان

  • Mahdi Khosravy
  • Mohammad Reza Alsharif
  • Katsumi Yamashita
چکیده

This paper proposes an ICA-based MIMO-OFDM system which efficiently overcomes problems inherent to ICA by using a precise and robust signal reconstruction method. It exploits the predetermined characteristics introduced to transmitted signals by a convolutional encoder at the transmitter to solve permutation indeterminacy, amplitude scaling ambiguity and phase distortion. Since, the introduced characteristics are only dependent on the convolutional code, despite the previous method, the proposed method is channel independent and robust. Moreover, the method is precise, because the accuracy of the introduced characteristics are fulfilled by an optimized convolutional code. We have compared the performance of the proposed MIMO-OFDM system with joint detection (JD) method which estimates the channels by using two training OFDM blocks. Although the JD method is a training based method, the performance of the proposed blind method is favorably comparable over slowly varying channels, and it dominates JD method over fast varying channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiuser Detection in MIMO-OFDM Wireless Communication System Using Hybrid Firefly Algorithm

In recent years, future generation wireless communication technologies are most the prominent fields in which many innovative techniques are used for effective communication. Orthogonal frequency-division multiplexing is one of the important technologies used for communication in future generation technologies. Although it gives efficient results, it has some problems during the implementation ...

متن کامل

Multiuser Detection and Channel Estimation in MIMO OFDM Systems via Blind Source Separation

This paper proposes a blind multiuser detection and channel estimation method for multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems based on blind source separation (BSS). Using multiple antennas for transmission and reception the multiuser detection problem can be cast as a BSS problem of linear instantaneous mixtures. The proposed method uses BSS ...

متن کامل

Semi-Blind CFO Estimation and ICA based Equalization for Wireless Communication Systems

In this thesis, a number of semi-blind structures are proposed for Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication systems, with Carrier Frequency Offset (CFO) estimation and Independent Component Analysis (ICA) based equalization. In the first contribution, a semi-blind non-redundant single-user Multiple-Input Multiple-Output (MIMO) OFDM system is proposed, with ...

متن کامل

A Robust and Precise Solution to Permutation Indeterminacy and Complex Scaling Ambiguity in BSS-Based Blind MIMO-OFDM Receiver

The multiuser separation problem in a multi-input multioutput (MIMO) orthogonal frequency division multiplexing (OFDM) system can be represented as an instantaneous blind source separation (BSS) problem in complex domain. But reconstruction of multiuser signals suffers from permutation indeterminacy, amplitude scaling ambiguity and phase distortion which are inherent to complex BSS. This paper ...

متن کامل

Adaptive Subcarrier Assignment and Power Distribution in Multiuser OFDM Systems with Proportional Data Rate Requirement

A low complexity dynamic subcarrier and power allocation methodology for downlink communication in an OFDM-based multiuser environment is developed. The problem of maximizing overall capacity with constraints on total power consumption, bit error rate and data rate proportionality among users requiring different QOS specifications is formulated. Assuming perfect knowledge of the instantaneo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009